If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x+3x^2=0
a = 3; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·3·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*3}=\frac{-48}{6} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*3}=\frac{0}{6} =0 $
| 6j-5=4j+9 | | 1/x+1/2x=4/x+2 | | Y=5x/x+5x | | 0.8*n-0.2=0.4*n | | 52+x+45=180 | | x^2=49/64=0 | | 6x+15-3x-1=20x-20 | | 4(x=6) | | 9m−7m=16 | | 4(x+4)=2(2x+5) | | y/3-6=-2 | | 6(x-9)=6x-54=+6 | | 2.3x=13.8= | | 4x2–15x+11=0 | | 8.5=9.7-0.4x | | -40=4(x+3) | | 64-12×2+6÷3=x | | x(3x=2) | | 3/x-5=(-5/2x-10)+4 | | -3(r+7=-41 | | 155=5-10m | | 3/x-5=-(5/2x-10)=4 | | -2x-1+x^2-4x=0 | | 5m2+6m−5=0 | | 3/x-5=-(5/2x10)=4 | | w^2+3w=168 | | -10b+9=-21 | | -6a-3=-6a+3 | | 11x=85+6x | | 7x-3=-(9-7x) | | -7(m+1)-m-10=-8(m+4)+15 | | 2x+5(x-8)=2(x-10) |